Gutachten mit Risikostudie zur Exploration und Gewinnung von Erdgas aus unkonventionellen Lagerstätten in Nordrhein-Westfalen und deren Auswirkungen auf den Naturhaushalt insbesondere die öffentliche Trinkwasserversorgung

## TOP 3: Ausblick auf die Risiko- und Auswirkungsanalyse

2. Sitzung des projektbegleitenden Arbeitskreises 23.04.2012 im MKULNV, Düsseldorf

Dr. Pateiro (Brenk Systemplanung) / Dr. Meiners (ahu AG)

ENTWURF Stand: 23.04.12















# Vorgesehene Gliederung des Gutachtens: Teil A

- 1. Anlass und Aufgabenstellung
- 2. Zielsetzung und Vorgehensweise
- 3. Unkonventionelle Gasvorkommen in NRW
- 4. Raum- und umweltplanerische Belange
- 5. Geologisch-hydrogeologische Beschreibung und Charakterisierung der Gebiete (Systemanalysen, Standorttypen)
- 6. Erkundungs- und Gewinnungstechniken
- 7. Risikoanalyse und Bewertung
- 8. Empfehlung zur weiteren Systemerkundung und zum Monitoring
- 9. Weitergehende Empfehlungen















### Ziele und Leitfragen der Risikoanalyse

- Eintrag von Frackfluiden in das oberflächennahe (nutzbare) Grundwasser
- Eintrag von Frackfluiden in das tiefe, hoch mineralisierte Grundwasser
- Eintrag von Flowback in das oberflächennahe (nutzbare) Grundwasser
- Aufstieg von Tiefenwasser (mit / ohne gefährliche Fluiden) in das oberflächennahe (nutzbare) Grundwasser
- Aufstieg von Methan
- Hydrogeologische Auswirkungen Gesamtsystem
- Beeinträchtigung anderer Schutzgüter
- Seismische Auswirkungen (ggf. in Zusammenhang mit Schutzgütern)
- Überregionale Auswirkungen auf den Wasserhaushalt (Wasserbedarf / Entsorgung)
- Vergleichbarkeit mit USA

ENTWURF Stand: 23.04.12















### Grundsätzlicher Aufbau der Risikoanalyse **Technische** Potenzielle Eingriffsszenarien Wirkpfade Technik Oberirdisch Frackfluid unterirdisch Flowback Risikoszenarien Grundwasser • oberirdische Risiken • unterirdische Risiken • Unsicherheiten / Wissensdefizite Analyse der Umweltauswirkungen ENTWURF deltah FUMINCO® Stand: 23.04.12

### Technische Eingriffsszenarien: Szenarien

### Versagensfreier Betrieb:

Alle technischen Komponenten arbeiten fehlerfrei

### Gefahrenpotentiale:

- Andere geologische/hydrogeologische Bedingungen als angenommen/modelliert
- Falsche Auslegung von Komponenten
- Falsche Bedienung von Komponenten

ENTWURF Stand: 23.04.12













# Technische Eingriffsszenarien: Szenarien

#### **Normaler Betrieb:**

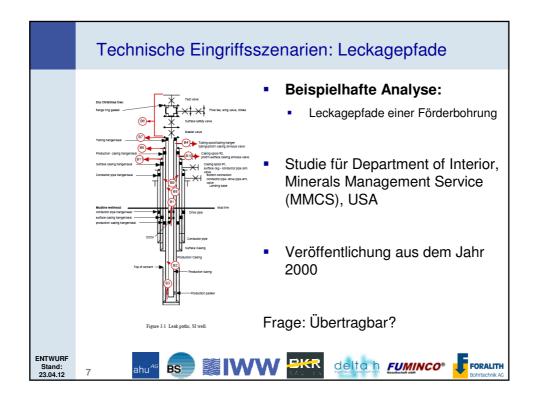
Alle technischen Komponenten arbeiten fehlerfrei haben aber eine Versagenswahrscheinlichkeit

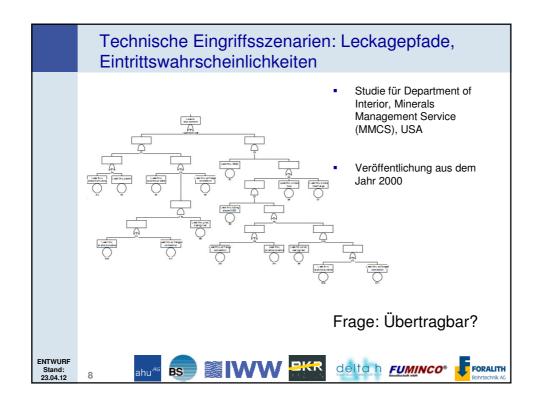
#### Gefahrenpotentiale:

- Versagen von Einzelkomponenten
- Versagen der Barrieren
- Andere geologische/hydrogeologische Bedingungen als angenommen/modelliert
- Falsche Auslegung von Komponenten
- Falsche Bedienung von Komponenten


















### Technische Eingriffsszenarien: Übertragbarkeit von Daten/Informationen

- Studie für International Association of Oil & Gas **Producers**
- Veröffentlichung aus dem Jahr 2010
- Von 2002 bis 2006 wurden in Alberta (CAN) 39 Blowouts gemeldet,...
  - bei 88.856 errichteten Förderbohrungen, ...
  - von denen in 7 Fällen Gas emittiert wurde, in allen übrigen Fällen nur Frischwasser,...
  - und in Schichten mit hohen H<sub>2</sub>S-Konzentrationen gebohrt wird.

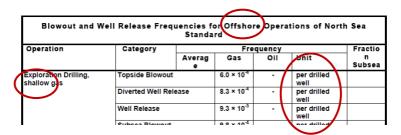
Frage: Übertragbar?

ENTWURF Stand: 23.04.12
















# Technische Eingriffsszenarien: Übertragbarkeit von Daten/Informationen



### Bisherige Erkenntnisse:

- Teilweise lassen sich die Daten übertragen
- · Es ist immer zu prüfen, ob die Unterschiede relevante für die Risikoanalyse sind oder nicht
- Nicht alle Unsicherheiten bei der Dateninterpretation können ausgeräumt werden















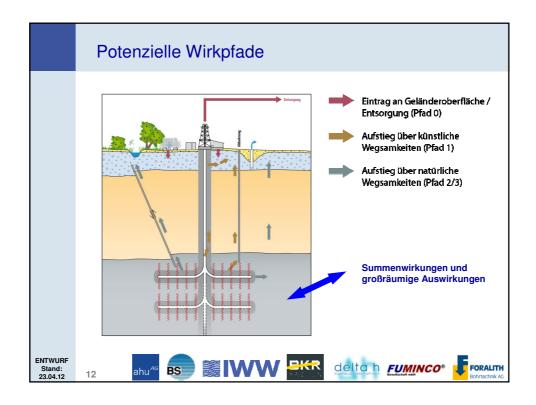
# Technische Eingriffsszenarien: Daten/Informationen Erste Erkenntnisse für künftige Vorgehensweise

- Eine umfängliche Risikoanalyse bedarf vieler (technikspezifischer) Daten.
- Für die Erdöl-/Erdgasbranche existieren einige kommerzielle Datenbanken, in denen Versagenshäufigkeiten für Gesamtsysteme und Einzelkomponenten gesammelt sind.
- Frei verfügbare Informationen sind eher generisch und teilweise nicht mehr aktuell.
- Bei zu Grunde Legung von Daten aus anderen Betrieben (Bsp.: Erdöl, offshore, Golf von Mexiko) können die Aussagen nur Anhaltswerte liefern. Die Unsicherheiten der Aussage können sehr groß sein.

ENTWURF Stand: 23.04.12

ahu<sup>AG</sup>
















### Potenzielle Wirkpfade

#### oberirdisch

- Transport wassergefährdender Stoffe
- Lagerung und Umgang mit wassergefährdenden Stoffen
- Entsorgung wassergefährdender Stoffe
- unterirdisch (Aufstieg wassergefährdender Stoffe + Gase in nutzbare Grundwasserleiter)
  - Bohrlochintegrität
  - Altbohrungen
  - Störungen
  - Migration durch das Deckgebirge
  - Großräumige, langfristige und summenhafte Beeinflussung des Wasserhaushalts

ENTWURF Stand: 23.04.12

13















# Mögliche standortspezifische Bewertung der Wirkpfade

#### Wahrscheinlicher Wirkpfad

- Unter normalen geologisch / hydrogeologischen Verhältnissen vorhandener Pfad
- für vergleichbare Standorte bereits beobachtet

### Weniger wahrscheinlicher Wirkpfad

- Unter ungünstigen geologisch / hydrogeologischen Verhältnissen möglicher Wirkpfad
- Selten beobachtet

#### Unwahrscheinlicher Wirkpfad

- Selbst unter ungünstigen geologisch hydrogeologischen Annahmen nicht zu erwartender Wirkpfad
- Noch nie beobachtet

### Keine Bewertung möglich

- Aufgrund fehlender Systemkenntis keine fundierte Abschätzung möglich
- Erkundungsbedarf benennen















|  | • Matrix c                       | ler                                         | W | irk | fak | toren     |                                       |        |                                                |     |   |   |  |
|--|----------------------------------|---------------------------------------------|---|-----|-----|-----------|---------------------------------------|--------|------------------------------------------------|-----|---|---|--|
|  | Wirkfaktor                       | Тур                                         |   |     |     |           | Voraussichtlich betroffene Schutzgüte |        |                                                |     |   |   |  |
|  |                                  | Α                                           | В | С   | D   | Dimension | В                                     | W      | K/L                                            | P/T | L | N |  |
|  | Flächenverbrauch                 |                                             |   |     |     |           |                                       |        |                                                |     |   |   |  |
|  | Stoffliche<br>Emissionen         |                                             |   |     |     |           |                                       |        |                                                |     |   |   |  |
|  | Änderung des<br>Wasserhaushaltes |                                             |   |     |     |           |                                       |        |                                                |     |   |   |  |
|  | Nutzungs-<br>umwandlung          |                                             |   |     |     |           |                                       |        |                                                |     |   |   |  |
|  | Erschütterungen                  |                                             |   |     |     |           |                                       |        |                                                |     |   |   |  |
|  | Lärmemissionen                   |                                             |   |     |     |           |                                       |        |                                                |     |   |   |  |
|  | Lichtemissionen                  |                                             |   |     |     |           |                                       |        |                                                |     |   |   |  |
|  |                                  |                                             |   |     |     |           |                                       |        |                                                |     |   |   |  |
|  | <b>Typ:</b><br>A Erkund          | dung                                        |   |     |     | Scho<br>B | Schutzgüter gem. UVPG:<br>B Boden     |        |                                                |     |   |   |  |
|  | B Gewin                          | nnung ohne Fracflui<br>nnung mit Fracfluide |   |     |     |           |                                       | Wasser |                                                |     |   |   |  |
|  |                                  |                                             |   |     |     | len K/L   |                                       |        | Klima / Luft<br>Pflanzen Tiere, biolog, Vielfa |     |   |   |  |

